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Abstract

The thermal diffusivity of elastomers, i.e. rubber-like materials, can with elastic
finite deformation. Initially isotropic elastomers may be thermally anisotropic when
deformed. Data from several experimental studies demonstrate significant changes in
thermal conductivity or diffusivity tensor with finite deformation. Formulating the
thermal diffusivity tensor and deformation in terms of the reference configuration may
aid in the development of constitutive relation by use of material symmetry. Illustrated
here is a relationship between the diffusivity and deformation of representative mate-
rial during uniaxial and equibiaxial deformation. Each component of the diffusivity
tensor appears to be related to the deformation in the direction of the component only.
This simple correlation also seems to describe well changes in diffusivity in initially
anisotropic elastomers and cold drawn semi-crystalline polymers.

1 INTRODUCTION
Elastomers are rubber-like materials that are often used in automotive, aerospace, and

medical applications in conditions of severe thermal and mechanical stress. Designs incor-
porating elastomers and other engineering materials rely increasingly on computer models
of material performance, thus requiring constitutive relations for the various responses of
each material. Specifically thermomechanical models of elastomeric material responses re-
quire constitutive models for both the mechanical and thermophysical responses of these
materials to various boundary conditions. Unlike most materials, elastomers exhibit unique
thermomechanical responses, such as the well-known Joule-Gough and thermoelastic inver-
sion effects. Few studies have examined the effect of temperature on mechanical response of
elastomers, focusing instead on the isothermal response. Even fewer have examined the influ-
ence of deformation on the thermal response of elastomers. Some experiments have shown
that there can be significant changes in the thermal conductivity or diffusivity tensors of
elastomers subject to finite deformation. Broerman et al. [1] have measured, for example,
increased thermal diffusivity in the direction of stretch for initially isotropic silicone rubber,
while the diffusivity in the orthogonal direction decreases during uniaxial stretching. Re-
sults from uniaxial stretching experiments may demonstrate a given phenomenon, but are
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insufficient to develop constitutive models for multiaxial behavior. Constitutive relations for
simple materials undergoing multiaxial deformation may be formulated from measurements
of homogeneous multiaxial deformations [4]. LeGall and Wright [2] measured the three
orthogonal components of the diffusivity tensor during biaxial stretching of polyurethane,
natural gum and neoprene rubber. The deformation was homogeneous in the central region
of the specimen, where the diffusivity was measured.

Constitutive relations for the thermophysical response of elastomers may be formulated in
terms of either the thermal diffusivity or conductivity tensors, which depend on temperature
and deformation, in general. Although the effect of temperature level on the value of thermal
diffusivity has been relatively well studied [3, 5], the effect of deformation on the value of
thermal diffusivity tensor has not been fully explored. Previous experimental results that
have demonstrated the deformation dependence of the thermophysical response have not
been formulated in a rigorous mathematical framework as may be required to develop con-
stitutive equations to predict the thermomechanical response with general multiaxial finite
deformation. Here, examining the results of previous experimental studies suggests a form
for a constitutive relationship between diffusivity and deformation. This relationship relies
on transferring data measured in the current configuration of the material to the reference
configuration and comparing the result with the right Cauchy-Green deformation tensor.
In this manner, a simple relation between the components of the diffusivity tensor and the
deformation is observed for several elastomers. Moreover, this relation appears to correlate
the data for several semi-crystalline polymers that have undergone permanent deformation
at below their glass transition temperature.

2 ANALYSIS
Theory reveals that two constitutive functions are required to describe the reversible

finite strain thermomechanical behavior of elastomers and that these may be the Helmholtz
Potential ψ and the spatial heat flux vector q [6]. Theory futher shows that ψ = ψ̂(F, T ) and
q = q̂(F, T,∇T ), where F (= ∂x/∂X) is the deformation gradient tensor, T the temperature,
∇T ( = ∂T/∂x) the temperature gradient, X the position vector of a material particle in
the reference configuration, and x the position vector of a material particle in the current
configuration. Material frame indifference allows ψ to be written as ψ = ψ(C, T ), where C
(= FT F) is the right Cauchy-Green deformation tensor. Stress-strain-temperature relations
result from derivatives of ψ with respect to C. For example, the Cauchy stress t may be
calculated by

t =
2

J
F
∂ψ(C, T )

∂C
FT (1)

where J = detF.
A widely accepted model of ψ is sought, although a number of models have been proposed

and describe mechanical response for various boundary conditions [8]. These models of ψ
have been developed based on either a statistical modeling of the molecular network or a phe-
nomenological approach based on continuum mechanics. Treloar [7] provides details about
development using statistical theory of the Gaussian model, also called the neo-Hookean.
The Gaussian model was developed using insight into the chemical structure of elastomers
to model the mechanical response and describes the mechanical response over a limited range
of deformation. Conversely, the phenomenological method develops models of ψ based on
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a mathematically formal framework and continuum scale experimental results. It has been
used to develop, for example, the neo-Hookean, Mooney-Rivlin, and Ogden models of the
Helmholtz potential [8]. Little attention has been paid to the effects of temperature on the
Helmholtz potential of elastomers, the focus being on isothermal deformation, instead. A
notable exception is the study of the development of a secondary molecular network result-
ing from microstructral changes due to elevated temperature and deformation [9]. This new
network results in changed mechanical response. Ogden [10] proposed a method for finding
ψ as a function of biaxial stretches and temperature, whereas Humphrey and Rajagopal [11]
showed that in-plane biaxial tests allow measurement of thermoelastic response functions
(e.g., ∂ψ/∂IC where IC = trC) similar to the isothermal results of Rivlin and Saunders [12].

Alternatively, most conduction heat transfer analyses neglect the influence of finite strain
on the heat flux vector. Rather, most reports assume Fourier conduction q(x, T ) = −k(T )∇T
where q(x, T ) is the spatial heat flux, ∇T (= ∂T/∂x) the spatial gradient of tempera-
ture, and k(T ) the scalar (i.e., isotropic) spatial thermal conductivity [3]. If anisotropy is
considered, then the heat flux may be written in the current configuration as q(x, T ) =
−k(F, T )∇T where k(F, T ) is the spatial thermal conductivity tensor. For materials sub-
ject to small deformation, models of thermal response may be developed using either the
current or reference configurations with indistinguishable results. Elastomers, however, are
often subject to large multiaxial deformation and models of the thermal response of mate-
rials subject to large deformation should include changes in material properties due to the
deformation. The thermal conductivity of elastomers can change as a result of the large
strain and may develop thermal anisotropy [1]. Note that finite strain constitutive relations
are more easily formulated in terms of the referential thermal conductivity K(C, T ), due to
material symmetry. Also note that q = (1/J)Fq0, where q0 is the heat flux vector in the
reference configuration and J = detF. Fourier conduction in the reference configuration may
be written as q0(x, T ) = −K(C, T ) · ∇0T (X, T ), where ∇0T (= ∂T/∂X) is the referential
temperature gradient. Fortunately, one can thus infer K(C, T ) from the measurable k(F, T )
via k(F, T ) = (1/J)F · K(C, T ) · FT.

Substituting Fourier’s equation into the referential conservation of energy equation yields,
neglecting the stress power and heat sources,

∂T (X, t)/∂t = α0(C, T ) : ∇2
0T (X, t) (2)

where α0(C, T ) (= K(C, T )/ρ0cF (C, T )) is the referential thermal diffusivity tensor, in
which ρ0 is the referential mass density and cF the referential constant deformation specific
heat. Because elastomers are here assumed to be incompressible and cF is insensitive to
deformation [1], either the thermal diffusivity tensor or thermal conductivity tensor may
be used to characterize changes in thermophysical response due to deformation. Thermal
diffusivity is more easily measured by non-contact methods, which is benefit for measurement
of α in materials subject to finite deformation.

Broerman et al. [1] used Forced Rayleigh Scattering (FRS) to measure the thermal
diffusivity of silicone rubber subject to uniaxial stretching. In FRS, a transient optical
grating is formed in the material by a diffraction pattern that results from absorption of
crossed laser beams [13]. This grating diffracts the light of a third laser that is not absorbed
by the material. The time decay in the efficiency of diffraction allows calculation of the
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Figure 1: Diffusivity of silicone rubber subject to uniaxial stretching [1]. Circles are α11,
parallel to the stretch λ1 and the triangles α33, orthogonal to λ1. The error bars represent
±7.5% uncertainty in the stretch measurement.

component of diffusivity in one direction. This method can measure one component of
diffusivity at a time and requires the intersecting laser light to be absorbed by the material,
which may require the material to be dyed. Nevertheless, the method can yield accurate
measurements of thermal diffusivity. Figure 1 shows the variation of α11 and α33 for silicone
rubber due to stretching in the 1-direction, as measured by Broerman et al. [1]. The error
bars represent a ±7.5% uncertainty in the measured stretch. There appears to be a linear
increase of α11 with respect to stretch ratio λ1 which equals the current length divided by
a reference length. A linear decrease appears in α33 with increasing λ1. Prompted by the
apparent linearity of the data, and inspired by the stress-optic rule, Broerman et al. describe
their results using the stress-thermal rule [14], that is

(α11 − α33) = c(t11 − t33) (3)

where c is a material parameter and the diffusivities are in the current configuration. This
relation gives the trend of the difference between the components of diffusivity in this case
of uniaxial stretching. The magnitude of each component is non-unique, however. Another
approach might be to examine the relationship of α11 with respect to λ1 and α33 with
respect to λ3. This requires computation of the orthogonal stretch, λ3. Assuming material
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Figure 2: The silicone rubber uniaxial loading data of Figure 1 replotted as α11 vs. λ11

(circles) and α33 vs. λ33 (triangles). The orthogonal stretch λ33 was calculated using incom-
pressibility.

incompressibility (J = 1), the deformation gradient tensor for uniaxial stretch is

F =



λ 0 0
0 λ−1/2 0
0 0 λ−1/2


 (4)

and, thus, λ3 = 1/
√
λ1. Figure 2 shows the results of Broerman et al. in these terms for

which there appears to be a single trend for α in terms of αii as a function of the λi.
As mentioned above, to take advantage of possible symmetry conditions for initially

isotropic materials, the values of α should be transformed to α0, i.e. the reference configura-
tion. Likewise, deformation should then be described as C for constitutive modeling. Figure
3 the relationship between α0 and C for silicone rubber in the reference configuration. The
only non-zero components of α0 are α0,11 = α11λ

2, α0,22 = α22λ
−1, and α0,33 = α33λ

−1.
Here, the material is assumed to be transversely isotropic, with α33 = α22, consistent with
Broerman et al. reporting only a single component of α in the orthogonal direction. A least
squares fit of these data shows that both the stretched and orthogonal directions apparently
follow the same trend. This trend is described well by

αii

αeq
= aCb

ii i = 1, 2, 3 (not summed) (5)
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Table 1: Coefficients for Equation 5 fit of α/αeq for initially isotropic elastomers subject to
uniaxial or biaxial stretching.

Material Loading a b r2 T Ref
Silicone Rubber Uniaxial 0.998 -0.945 0.990 25◦C [1]

PU RTV (preconditioning 1) Biaxial 0.929 -0.926 0.998 20◦C [2]
PU RTV (preconditioning 2) Biaxial 0.931 -0.946 0.998 20◦C [2]
PU RTV (preconditioning 3) Biaxial 0.897 -0.929 0.998 20◦C [2]

where a and b are dimensionless material parameters, with values shown in Table 1.

LeGall and Wright [2] measured the principal components of thermal diffusivity of room
temperature vulcanizing (RTV) polyurethane that was subject to homogeneous equibiaxial
deformation, wherein both in-plane directions are stretched equally. They used a variation of
the flash method [15] that measures the three principal components of α simultaneously [16].
This pulse system involves a minimum of contact with the specimen, which is required for
measuring the thermal diffusivity of materials undergoing finite stretch. For in-plane stretch
ratios of λ1 and λ2, the out-of-plane stretch ratio will be λ3 = 1/λ1λ2, for an incompressible
material. The deformation gradient tensor is

F =



λ1 0 0
0 λ2 0
0 0 λ−1

1 λ−1
2


 (6)

By again transforming α to the reference configuration, and plotting the components of α0

against the corresponding components of C, there appears to be a single relationship for the
polyurethane RTV (Figure 4). Least squares fitting of these data suggest a similar trend
as in the uniaxial data. The coefficients for three specimens are listed in Table 1; LeGall
and Wright [2] cite the three specimens separately because each had undergone a different
mechanical preconditioning protocol. Preconditioning of elastomeric specimens is required
to obtain repeatable thermoelastic results due to the Mullins effect [7].

4 DISSCUSSION
The isotropic thermal diffusivity tensor of undeformed elastomers develops anisotropy

when the elastomer undergoes reversible finite strain. While constitutive relations for ther-
mal diffusivity that include the influence of finite deformation could be developed using a
number of coordinate frames, relating α to α0 and comparing it with C, i.e., in the reference
configuration, will aid in the development of the constitutive relations because of material
symmetry. Equation 5 and its ability to fit the diffusivity data suggest that components of
diffusivity are described by deformation in the same direction as that component, and are
uninfluenced by deformation in the other directions. Deformation orthogonal to the uniaxial
stretch or in the out-of-plane direction for the biaxial stretch case was computed assuming
that rubber-like materials are volume preserving on deformation. This assumption has been
well-justified based on measurements that have shown that volume changes are of the order
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Figure 3: Silicone rubber uniaxial loading data from Figure 1 plotted in the reference con-
figuration as α0,11 vs. C11 (circles) and α33 vs. C33 (triangles).

10−4 or less [7]. Based on the assumption of incompressibility, the components of F are
related by J = 1 and only one component of F is needed to characterize the deformation
for the uniaxial and equibiaxial cases. This suggests that the off-axis terms are unlikely to
contribute to changes in α0 for initially isotropic materials.

Table 1 presents the coefficients for Equation 5 in terms of a normalized thermal diffusivity
α0/αeq. In the study of Broerman et al., two components of thermal diffusivity are given, one
parallel to the stretch direction and the other orthogonal to this direction, which implies that
the α is transversely isotropic after uniaxial stretch. The principal components of normalized
thermal diffusivity from silicone rubber and polyurethane RTV shows that regardless of
the deformation being uniaxial or biaxial, when examined in the reference configuration,
the components of the thermal diffusivity tensor follow a similar trend with respect to the
components of C. The parameter a in Equation 5 would be expected to be 1 because when
the material is undeformed, F = I and C = FTF = I, while, by definition, αii = αeq. For
silicone rubber, the coefficient a is about 1.0, which is consistent with above analysis. There
is an approximately 8% deficit in a for the biaxially stretched polyurethane, however, which
may suggest additional mechanisms and the need for a different correlation. The exponent b
ranges approximately from −0.93 to −0.95 for both uniaxial and biaxial loading, somewhat
different than a simple inverse relation. The implications of these parameter values and the
variation with material formulation and sample loading warrant further study.
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Figure 4: Diffusivity of biaxially stretched polyurethane RTV rubber, in terms of the ref-
erence configuration. In-plane components are α0,11/αeq vs. C11 (circles), α0,22/αeq vs. C22

(squares), and α0,33/αeq vs. C33 (triangles)
.

LeGall and Wright [2] also measured the principal components of α of natural gum rubber
(NGR) and neoprene that were anisotropic in the undeformed state due to manufacturing. In
the reference state, the in-plane components of α were 5 and 6 % higher than the out-of-plane
coefficient for the NGR and neoprene, respectively. Materials with initial anisotropy exceed
the assumptions of the aforementioned theoretical foundation for ψ and q. Nevertheless, the
response of these materials, shown by the values of a and b for the NGR and neoprene listed
in Table 2, is similar to those listed in Table 1.

In addition to the elastomers, components of k have been measured for several polymers
that were irreversibly drawn while cooler than their glass transition temperatures. As with
diffusivity, K can be inferred from k and as before, the referential thermal conductivity
and diffusivity tensors are related as α0(C, T )(= K(C, T )/ρ0cF (C, T )). Because of the
assumption that the volume preserve during deformation, the density ρ would not change.
In addition to that, the specific heat cF would not change either during deformation [1], and
thus α0/αeq = K/Keq. Table 3 lists the coefficients a and b for high density polyethylene
(HDPE), polymethylmethacrylate (PMMA), and polystyrene (PS). The PMMA and PS
show similar behavior to the uniaxially stretched silicone rubber of Table 1, where as the
HDPE behaves similarly to the biaxially stretched polyurethane, NGR, and neoprene.
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Table 2: Coefficients for Equation 5 for α0/αeq of initially anisotropic elastomers subject to
equibiaxial loading

Material Loading a b r2 T Ref.
NGR Biaxial 0.9273 -0.9783 0.9943 20◦C [2]

Neoprene Biaxial 0.9378 -0.9331 0.9948 20◦C [2]

Table 3: Coefficients for Equation 5 for K/Keq of polymers subject to uniaxial cold drawing.

Material Loading a b r T Ref.
HDPE Uniaxial 0.863 -0.632 0.996 100 K [17]
HDPE Uniaxial 1.57 -0.591 0.942 300 K [17]
PMMA Uniaxial 1.01 -0.907 1.00 40◦C [18]

PS Uniaxial 0.992 -0.988 1.00 40◦C [18]
PMMA (B-10834) Uniaxial 1.00 -0.930 1.00 40◦C [18]

PMMA Uniaxial 1.01 -0.901 1.00 40◦C [18]

5 CONCLUSION
There appears to be a simple relation between finite deformation and the changes in

diffusivity of elastomers. Clearly, further study is required to clarify the relationship between
α and deformation for elastomers and other polymers. Additional theoretical developments
will be needed to uncover the appropriate forms of ψ and q for drawn polymers, although
these materials appear to follow a trend similar to the elastomers. Both molecular weight
[18] and cross-linking [9] have influence on the thermomechanical response of elastomers.
Their role on the constitutive behavior needs to be uncovered.
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